Abstract

Transparent electrodes made from metal oxides suffer from poor flexibility and durability. Highly transparent and electrically conductive thin films were assembled as a potential indium tin oxide (ITO) replacement using layer-by-layer (LbL) assembly of single-walled carbon nanotubes (SWNTs), stabilized with negatively charged deoxycholate (DOC), and positively charged poly(diallyldimethylammonium chloride) [PDDA]. Ellipsometry, quartz crystal microbalance, and UV-vis were used to measure the linear growth of these films as a function of the number of bilayers deposited, while TEM and SEM were used to visualize the morphology of these films. The PDDA/(SWNT + DOC) system produced transparent (>82% visible light transmittance) and electrically conductive (∼160 S cm−1) 20-bilayer films with a 38.4 nm thickness. Moreover, a series of post-treatments, involving heating and nitric acid doping, were used to increase conductivity to 1430 S cm−1 (Rs ≈ 300 Ω sq−1), with no change in transparency, owing to the removal of PDDA and the charge transfer doping. This study demonstrates high visible light transmittance and electrical conductivity of SWNT-based thin films, which are potentially useful as flexible transparent electrodes for a variety of optoelectronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.