Abstract
The threshold of optical breakdown of the nickel alloy ChS57 (Inconel) was measured at a wavelength of 0.355 μm with a laser pulse duration of 10 ns. Heat treatment of ChS57 above pulse energy density threshold (1 - 2.5 J/cm2) occurred mainly in the ablative mode with almost no melting. The elemental composition of the surface layer did not change at an irradiation in a fixed spot. When a laser beam moves along the surface of the sample at a speed of 1 mm / s and at pulse energy density of about 0.02 J/cm2, oxygen was detected in the elemental composition (3 – 4 wt. %). However, the proportions of the elemental composition of the alloy remained virtually unchanged. Heat treatment under threshold at pulse energy density ≥ 0.25 J/cm2 revealed a rise of the surface layer with traces of high-temperature plastic deformation in the form of slippage on grain boundaries and crystallographic slip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.