Abstract
Glassy carbon (GC) is a type of non-graphitizing disordered carbon material at ambient pressure and high temperatures, which has been widely used due to its excellent mechanical properties. Here we report the changes in the microstructure and mechanical properties of GC treated at high pressures (up to 5 GPa) and high temperatures. The formation of intermediate sp2–sp3 phases is identified at moderate treatment temperatures before the complete graphitization of GC, by analyzing synchrotron X-ray diffraction, Raman spectra, and transmission electron microscopy images. The intermediate metastable carbon materials exhibit superior mechanical properties with hardness reaching up to 10 GPa and compressive strength reaching as high as 2.5 GPa, nearly doubling those of raw GC, and improving elasticity and thermal stability. The synthesis pressure used in this study can be achieved in the industry on a commercial scale, enabling the scalable synthesis of this type of strong, hard, and elastic carbon materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.