Abstract
Recent results on theoretical studies of heat conduction in low-dimensional systems are presented. These studies are on simple, yet nontrivial, models. Most of these are classical systems, but some quantum-mechanical work is also reported. Much of the work has been on lattice models corresponding to phononic systems, and some on hard particle and hard disc systems. A recently developed approach, using generalized Langevin equations and phonon Green's functions, is explained and several applications to harmonic systems are given. For interacting systems, various analytic approaches based on the Green-Kubo formula are described, and their predictions are compared with the latest results from simulation. These results indicate that for momentum-conserving systems, transport is anomalous in one and two dimensions, and the thermal conductivity kappa, diverges with system size L, as kappa ~ L^alpha. For one dimensional interacting systems there is strong numerical evidence for a universal exponent alpha =1/3, but there is no exact proof for this so far. A brief discussion of some of the experiments on heat conduction in nanowires and nanotubes is also given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.