Abstract

Various heat-transfer mechanisms which have been previously proposed are analyzed in the light of recent experiments. Evidence is presented in favor of a vapor-liquid exchange mechanism. The vapor-liquid exchange mechanism is shown to explain the insensitivity of boiling heat flux to the level of subcooling. A “Reynolds’ analogy” for nucleate boiling is presented in some detail. A procedure is given for calculating the superheat at which the liquid bulk velocity ceases to contribute to the heat flux. An expression for the growth of a vapor bubble in a highly superheated liquid is deduced. A method is presented which allows the deduction of correlations for nucleate boiling which give the dependence of heat flux on superheat and system pressure. Two such correlations are presented and results are compared with experiment. It is shown that one correlation yields the heat flux for different liquids varying from water to mercury, without necessitating any change in constant or exponent of the correlation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.