Abstract

This article presents an experimental study of the local heat transfer on the rotor surface in a discoidal rotor–stator system air-gap in which an air jet comes through the stator and impinges the rotor. To determine the surface temperatures, measurements were taken on the rotor, using an experimental technique based on infrared thermography. A thermal balance was used to identify the local convective heat transfer coefficient. The influence of the dimensionless spacing interval G between the disks and of the rotational Reynolds number Re was measured and compared with the data available in bibliography. Local convective heat transfer coefficients were obtained for an axial Reynolds number Re j = 41.6 × 10 3, a rotational Reynolds number Re between 0.2 × 10 5 and 5.16 × 10 5, and a dimensionless spacing interval G ranging from 0.01 to 0.16.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.