Abstract

Experimental studies on heat transfer characteristics for single-phase natural circulation flow under a rolling motion condition are performed. Experiments with and without rolling motions are conducted so that the effects of rolling motion on natural circulation heat transfer are obtained. The experimental results show rolling motion enhances the heat transfer. The heat transfer coefficient of natural circulation flow increases with the rolling amplitude and frequency. A modified Reynolds number that considers the influence of the acceleration is employed to express the effect of heat capacity. Using experimental data, an empirical equation for the heat transfer coefficient under a rolling motion condition is obtained. The calculated results agree with the experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.