Abstract

An experimental investigation of the heat-transfer coefficient to a spherical probe in a cyclone-bed chamber with fluidized bed in the “cold” and “hot” regimes has been carried out. The heat-transfer coefficient was determined by the regular thermal regime. The dependences of the heat-transfer coefficient in the vortex-bed furnace on the various parameters: the diameter of the outlet hole, the air flow rate, the share of the bottom blast and the location of the probe were determined. It is revealed that in the “cold” regime the heat-transfer coefficient has practically constant value in the radial direction, it almost does not depend on the diameter of the outlet hole and the share of the bottom blast and depends significantly on the position of the probe along the height of the furnace and the air flow rate. The effect of flow swirling on the heat-transfer coefficient in a cyclone-bed chamber with fluidized bed is determined. When the fuel burns (“hot” regime), the heat-transfer coefficient is not constant in the radial direction and accept the maximum values in the central area of the chamber. At the same time, the part of conductive-convective component in the total heat-transfer coefficient to the spherical probe, depending on its radial position, is estimated at 40–70 %. The results can be used in the design and creation of modern high-efficiency furnaces for burning local solid biofuels.

Highlights

  • HEAT TRANSFER IN THE VORTEX ZONE OF A CYCLONE-BED CHAMBER OF FURNACE UNIT WITH FLUIDIZED BED

  • The heat-transfer coefficient was determined by the regular thermal regime

  • it almost does not depend on the diameter of the outlet hole

Read more

Summary

Introduction

HEAT TRANSFER IN THE VORTEX ZONE OF A CYCLONE-BED CHAMBER OF FURNACE UNIT WITH FLUIDIZED BED.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.