Abstract

In this paper, the fluid flow and heat transfer characteristics of a small rectangular channel fitted with triangular protrusions have been studied in a three-dimensional computational domain. A hybrid cooling strategy employing forced convection air stream with jet impingement on the protruded surface has been numerically studied by solving the conservation equations for mass, momentum, energy as well as turbulent kinetic energy and its dissipation rate in the frame work of finite volume method. The duct and nozzle Reynolds numbers and Prandtl number are varied in the range of \( 17,827 \le \text{Re}_{Dh,duct} \le 53,480 \), \( 5,135 \le \text{Re}_{Dh,nz} \le 12,044 \) and \( 0.7 \le \Pr \le 12 \), respectively. The effects of the duct Reynolds number, nozzle Reynolds number and Prandtl number on heat transfer rate have been quantified. Extensive numerical computation has also been executed to collect the data for Nusselt number by varying each of the independent parameters. A non-linear regression analysis based on Lvenberg–Marquardt (L–M) method has been used to fit a correlation for Nusselt number utilizing the data captured from CFD analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.