Abstract
Microcanonical ensemble molecular dynamics simulations of structure I methane hydrate is presented in this work to study the endothermic decomposition process. The mechanism of decomposition of methane hydrate as a function of time was explained at the molecular level. The initial temperature and pressure of the simulation were chosen so as to depict the natural gas hydrate in conditions of oceanic sediments. A more realistic strategy was developed to perform the microcanonical ensemble simulation of solid–liquid interface of hydrate and amorphous water. Two water models, SPC/E and TIP4P, were used for the simulations, and the results of the simulations were compared. Heat transfer calculations were performed on the adiabatic system, and an attempt has been made to fit the MD simulation results to the heat balance equations derived from the heat transfer calculations. Estimates of the properties at the macroscopic scale, like the equilibrium temperature of methane hydrate and rate of supply of hot water f...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.