Abstract
Abstract To figure out the abnormal flow characteristics and thermal performance of supercritical fluids, some detailed information of supercritical pressure n-decane flowing in a horizontally round pipe is studied in terms of secondary flow induced by the huge density change or buoyancy force. According to an evaluation of turbulence models, the shear stress transport k–ω is suitable to execute the case of horizontal flow. It is observed that the temperature distributions between the upper wall region and the lower wall region are asymmetric and the location of the maximum buoyancy force coincided with the position of Tpc (pseudo-critical temperature). The generation of a rotating flow arising from the heated wall determines the occurrence of heat transfer deterioration (HTD). In the boom stage of the HTD phenomenon, a dead zone that is close to the upper wall was formed due to the influence of vortices. In contrast, the maximum buoyancy force is located in the core flow zone and it forces the fluid in the mainstream to participate in the cooling process of the heated wall. In addition, the dead zone in the vicinity of the upper wall is broken. This is the main reason why heat transfer deterioration could be inhibited effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.