Abstract

This article analyses the effects of heat transfer and thermal conductivity on the peristaltic transport of Jeffery fluid through an inclined elastic tube with porous walls. The velocity slip and convective boundary conditions are taken into account. The modeled governing equations are solved analytically by considering the long wavelength and small Reynolds number approximations. The closed-form solutions are obtained for velocity, flow rate, and the theoretical determination of flow rate is calculated with the help of equilibrium condition given by Rubinow and Keller. A parametric analysis has been presented to study the effects of Jeffery parameter, thermal conductivity, Darcy number, the angle of inclination, velocity slip, Biot number, amplitude ratio, Prandtl number, and Eckert number on velocity, flow rate, and temperature are scrutinized. The streamlines show that the bolus moves with the same speed as that of the wave and further the study reveals that an increase in the Biot number reduces the magnitude of the temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.