Abstract

The mechanisms of sensing and signalling of heat and oxidative stresses are not well understood. The central question of this paper is whether in plant cells oxidative stress, in particular H(2)O(2), is required for heat stress- and heat shock factor (HSF)-dependent expression of genes. Heat stress increases intracellular accumulation of H(2)O(2) in Arabidopsis cell culture. The accumulation was greatly diminished using ascorbate as a scavenger or respectively diphenyleneiodonium chloride (DPI) as an inhibitor of reactive oxygen species production. The mRNA of heat shock protein (HSP) genes, exemplified by Hsp17.6, Hsp18.2, and the two cytosolic ascorbate peroxidase genes Apx1, Apx2, reached similar levels by moderate heat stress (37 degrees C) or by treatment with H(2)O(2), butylperoxide and diamide at room temperature. The heat-induced expression levels were significantly reduced in the presence of ascorbate or DPI indicating that H(2)O(2) is an essential component in the heat stress signalling pathway. Rapid (15 min) formation of heat shock promoter element (HSE) protein-binding complex of high molecular weight in extracts of heat-stressed or H(2)O(2)-treated cells and the inability to form this complex after ascorbate treatment suggests that oxidative stress affects gene expression via HSF activation and conversely, that H(2)O(2) is involved in HSF activation during the early phase of heat stress. The heat stress induction of a high mobility HSE-binding complex, characteristic for later phase of heat shock response, was blocked by ascorbate and DPI. H(2)O(2 )was unable to induce this complex suggesting that H(2)O(2) is involved only in the early stages of HSF activation. Significant induction of the genes tested after diamid treatment and moderate expression of the sHSP genes in the presence of 50 mM ascorbate at 37 degrees C occurred without activation of HSF, indicating that other mechanisms may be involved in stress signalling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.