Abstract

Heat shock cognate protein 70 (HSC70) is a constitutively expressed molecular chaperone protein which can maintain the structure and function of the protein. HSC70 is engaged in a variety of physiological processes, yet its role during skeletal muscle differentiation is still unclear. C2C12 cells were obtained and cultured. During differentiation, the expression of HSC70 was evaluated by RT-PCR. To determine the function of HSC70 during C2C12 myoblast differentiation, myotube transfection of siR-HSC70 was performed with Lipofectamine 2000 Reagent. Western blot was used to measure the expression of Yin Yang 1 (YY1) after down-regulating HSC70. To further assess if YY1 mediates the pro-differentiation effect of HSC70, a plasmid of YY1 overexpression was used to increase the expression of YY1 in the presence of siR-HSC70-2. The formation of myotubes was visualized by immunofluorescent staining, while the expression levels of MyoD and MyoG were evaluated by RT-PCR. In this study, we found that HSC70 was up-regulated during C2C12 myoblast differentiation. Knockdown of HSC70 not only inhibited the C2C12 myoblast differentiation but also reduced the expression of MyoD and MyoG. When YY1 protein was over-expressed, it could restore the differentiation in cells with HSC70 knockdown or inhibition. Collectively, this study demonstrates that HSC70 is involved in the regulation of C2C12 myoblast differentiation via YY1 and may serve as a potential target for a therapeutic strategy to prevent muscle atrophy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.