Abstract

The spiked blunt body is usually adopted to reduce the aerodynamic heating of hypersonic vehicles. In this paper, the heat reduction mechanism of hypersonic spiked blunt body with installation angle at large angle of attack is studied by the CFD numerical method. The AUSM+ scheme and Menter's SST k-ω turbulent model are adopted for the spatial discretization and turbulent simulation respectively. The results show that the maximum wall heat flux of blunt body is sensitive to the angle of attack. The increase of angle of attack causes the aerodynamic heating to rise sharply. The installation angle of the spike can effectively reduce the maximum heat flux of blunt body at large angle of attack, which is very beneficial to the thermal protection of blunt body. There is an optimal installation angle to minimize the maximum heat flux of blunt body. The optimal installation angle is about 1.5° greater than the angle of attack. All the investigations in this paper show the feasibility and advantages of spiked blunt body with installation angle in the engineering applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.