Abstract

High-temperature superconductivity (HTS) has the potential to be a useful technology for space applications, allowing for high current densities and magnetic field generation in compact devices. However, HTS requires cryogenic temperatures and it is not well understood how this can best be achieved in a space environment. Using a modelling approach, the expected heat load on a hypothetical 3U CubeSat with an HTS coil during a sun-synchronous low Earth orbit was predicted. The direction and magnitude of solar, albedo and infrared incident radiation toward the satellite was calculated for each orbital position of a circular 732 km, Ω = 0° longitude of ascending node orbit. Using a finite element approach, the surface radiosity and temperature of the CubeSat was predicted and validated. Finally, the instantaneous heat load on the HTS magnet, which generates a 1T magnetic field, was calculated as a function of orbital position. This study provides technical information about the characteristics of the refrigeration device required to maintain cryogenic temperatures for an HTS coil on a space faring vessel, such as a portable cryocooler. Selection and design of a satellite cooling system must be optimised according to the calculated heat load and available solar power.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.