Abstract

AbstractDirect simulation Monte Carlo (DSMC) method has been widely used to study gaseous flow and heat transfer in micro‐fluidic devices. For flows associated with microelectromechanical systems (MEMS), the heat‐flux‐specified (HFS) boundary condition broadly exists. However, problems with HFS boundary have not been realized in the simulation of microchannel flows with DSMC method. To overcome this problem, a new technique named as inverse temperature sampling (ITS) is developed. This technique provides an approach to calculate the molecular reflective characteristic temperature from the specified heat flux at the wall boundary. Coupling with DSMC method, the ITS technique can treat the HFS boundary condition in DSMC method for both simple gas and gas mixtures. For validation, heat flux obtained from two‐dimensional Poiseuille flows with wall‐temperature‐specified (WTS) boundary condition is employed as the initial thermal boundary condition of our new method. Sampled wall temperature by the ITS method agrees well with the expected value. Pressure, velocity and temperature distributions under these two thermal boundary conditions (WTS and HFS) are compared. Effects of molecule collision model and gas–surface interaction model are also investigated. Results show that the proposed ITS method could accurately simulate gaseous flow and heat transfer in MEMS. Copyright © 2007 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.