Abstract

Abstract Cold air blowing out over a warm ocean leads to convection over an isolated region of the ocean basin. This phenomenon, known as open-ocean convection, is often simulated by convective forcing from a circular disk much smaller than the dimension of the domain. An important feature of these simulations is the development of eddies at the edge of the disk that serve to transport heat horizontally. This has sparked interest in the heat-flux characteristics of such a system. This paper deals with the thermodynamic properties of this type of convective flow, using a rotating tank with bottom-mounted hotplate as the experimental apparatus. Experiments are performed, in an initially unstratified fluid, for a set of values of the nondimensional forcing parameter Rc = B1/2/(Hf3/2), where B is the buoyancy flux, H is the fluid depth, and f is the Coriolis parameter. The ratio of the frontal eddy size to the hotplate radius, ϵ, is shown to be an important parameter. The experiments reported are for the regi...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.