Abstract

Coral reefs worldwide are suffering mass mortalities from marine heat waves. With the aim of enhancing coral bleaching tolerance, we evolved 10 clonal strains of a common coral microalgal endosymbiont at elevated temperatures (31°C) for 4 years in the laboratory. All 10 heat-evolved strains had expanded their thermal tolerance in vitro following laboratory evolution. After reintroduction into coral host larvae, 3 of the 10 heat-evolved endosymbionts also increased the holobionts' bleaching tolerance. Although lower levels of secreted reactive oxygen species (ROS) accompanied thermal tolerance of the heat-evolved algae, reduced ROS secretion alone did not predict thermal tolerance in symbiosis. The more tolerant symbiosis exhibited additional higher constitutive expression of algal carbon fixation genes and coral heat tolerance genes. These findings demonstrate that coral stock with enhanced climate resilience can be developed through ex hospite laboratory evolution of their microalgal endosymbionts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.