Abstract

The coupled effects of heat and frequency in very-high-cycle fatigue are known under ultrasonic testing, while the heat dissipation behavior of welded joints is less investigated. In this work, the specimen surface temperature of a low-strength-steel welded joint and its base metal were monitored by infrared thermal imaging technique under ultrasonic fatigue loading. Results showed that the surface temperature distribution of both welded and base metal exhibited a parabola shape, and the temperature evolved with three stages. The location of the highest temperature within the weld metal correlated well with fatigue failure location. The inhomogeneity and asymmetry of temperature distribution implied a dominant role for heat transfer mode and insignificant influence of microstructure heterogeneity or specimen type. The nature of heat dissipation in low-strength steel in ultrasonic fatigue was thermal–mechanical coupling effect, which should be paid close attention in the standardization of ultrasonic fatigue testing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.