Abstract

We develop a computational framework, based on the Boltzmann transport equation (BTE), with the ability to compute thermal transport in nanostructured materials of any geometry using, as the only input, the bulk cumulative thermal conductivity. The main advantage of our method is twofold. First, while the scattering times and dispersion curves are unknown for most materials, the phonon mean free path (MFP) distribution can be directly obtained by experiments. As a consequence, a wider range of materials can be simulated than with the frequency-dependent (FD) approach. Second, when the MFP distribution is available from theoretical models, our approach allows one to include easily the material dispersion in the calculations without discretizing the phonon frequencies for all polarizations thereby reducing considerably computational effort. Furthermore, after deriving the ballistic and diffusive limits of our model, we develop a multiscale method that couples phonon transport across different scales, enabling efficient simulations of materials with wide phonon MFP distributions length. After validating our model against the FD approach, we apply the method to porous silicon membranes and find good agreement with experiments on mesoscale pores. By enabling the investigation of thermal transport in unexplored nanostructured materials, our method has the potential to advance high-efficiency thermoelectric devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.