Abstract

Non-equilibrium molecular dynamics simulations have been employed to calculate the thermal conductivity of coaxial nanocables of Au nanowire core and carbon nanotube shell, i.e. nanotubes filled with nanowires. Our efforts are focused on how the thermal conductivity can be altered in nanocables. By performing analysis on the phonon vibrational density of states, we have revealed that the thermal conductivity of nanocables is 20-42% higher than the corresponding bare nanotubes, due to the interactions of C–C and C–Au and the mass transfer induced by nanowire axial motion. The dependences of thermal conductivity on the temperature, length, diameter, chirality and filling ratio have been investigated. It turns out that the tendencies of nanocable thermal conductivity changing with temperature, length and diameter are similar to bare nanotubes. In addition, the thermal conductivity of nanocables always goes up with the increasing filling ratio. For different chirality types, the zigzag (18, 0) nanocable has the largest thermal conductivity increments, followed by armchair (10, 10) and chiral (14, 7) nanocables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.