Abstract

The heat capacities of d-ribose and d-mannose have been studied over the temperature range from 1.9 to 440 K for the first time using a combination of Quantum Design Physical Property Measurement System and a differential scanning calorimeter. The purity, crystal phase and thermal stability of these two compounds have been characterized using HPLC, XRD and TG–DTA techniques, respectively. The heat capacities of d-Mannose have been found to be larger than those of d-ribose due to its larger molecular weight, and the solid–liquid transition due to the sample melting has also been detected in the heat capacity curve. The heat capacities of these two compounds have been fitted to a series of theoretical models and empirical equations in the entire experimental temperature region, and the corresponding thermodynamic functions have been derived based on the curve fitting in the temperature range from 0 to 440 K. Moreover, the phase transition enthalpy and melting temperature of these two compounds have also been determined from the heat flows obtained in DSC measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.