Abstract
A numerical simulation using dynamic mesh method by COMSOL has been developed to model heat and mass transfer during vacuum freezing by evaporation of a single droplet. The initial droplet diameter, initial droplet temperature, and vacuum chamber pressure effect are studied. The surface and center temperature curve was predicted to show the effect. The mass transfer rate and radius displacement were also calculated. The results show the dynamic mesh shows well the freezing process with the radius reduction of droplet. The initial droplet diameter, initial droplet temperature, and vacuum pressure have obvious effect on freezing process. The total freezing time is about 200 s, 300 s, and 400 s for droplet diameter 7.5 mm, 10.5 mm, and 12.5 mm, respectively. The vacuum pressure less than 200 Pa is enough for the less time to freezing the droplet, that is, the key point in freezing time. The initial droplet temperature has obvious effect on freezing but little effect on freezing temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.