Abstract

In this study, heat and mass transfer flow of a viscoelastic (Walter’s liquid-B model) nanofluid over a stretching/shrinking sheet with slip velocity condition is considered. The governing equations for the model which is non-linear partial differential equations are first transformed by using similarity transformation. Runge-Kutta-Fehlberg (RKF) method is employed to solve the transformed ordinary differential equations. Numerical solutions are obtained for the reduced Nusselt number, the Sherwood number and the skin friction coefficient. It is found that the Walter’s viscoelastic nanofluid provided the higher heat and mass transfer rate compared to the ordinary nanofluid and the presence of the velocity slip reduces the effects of the stretching parameter on the skin friction coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.