Abstract

High nitrogen concentration of groundwater poses a threat to human health. This study evaluated the potential health risk of nitrogen pollution in Yinchuan plain by geostatistical analysis and triangular stochastic model considering different land use types, and identified the uncertainties of the parameters. 163 samples were collected from groundwater wells in different land use types. The results show that the concentration of NO3−-N ranges from 0.059 to 450 mg/L, with an average of 22.439 mg/L. Approximately 32% of the samples exceed Grade III threshold (20 mg/L of N). The concentration of NH4+-N ranges from 0.011 to 11 mg/L, with an average of 0.456 mg/L. The concentration of NO2−-N ranges from 0.003 to 9.09 mg/L The NO3−-N and NH4+-N concentration in the groundwater of the unutilized land use is significantly lowest among all the land types. The concentration of nitrogen is highest in farmland use. The ranking of non-carcinogenic risk under different land types for infants, children, adult males and females is: farmland use > residential land use> unutilized land use. The non-carcinogenic risk value of farmland use is three times as much as that of the residential land use. Drinking groundwater can be potentially harmful to human health, and nitrogen pollutants pose an even greater threat to infant. At the same time, considering the impact of different land use types on groundwater would avoid overestimating or underestimating regional risk value. Triangular stochastic model is more sensitive to data changes and can reduce uncertainty. The contribution rate of nitrate concentration to risk is more than 83%, indicating that random sampling is needed to improve the reliability of evaluation results. The research results of this study will provide a new way to solve the uncertainty in groundwater security management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.