Abstract

Currently, available synthetic bone substitutes have adequate osteoconductive properties but have little or no osteoinductivity. Recent research has focused on using osteogenic growth factors or cells to provide this. JAX is a beta tricalcium phosphate bone graft substitute that has a novel shape and interlocking design. This study investigated delivery methods and the use of autologous cell therapy to enhance healing of a bone defect using JAX as a scaffold. Bone marrow was harvested from 24 New Zealand White rabbits. The mononuclear cell fraction was isolated and culture expanded. Bilateral 1.5 cm defects in the ulna were filled with: Group 1: JAX alone, Group 2: JAX plus 1x10(7) autologous BMSCs injected at the time of surgery, Group 3: JAX plus 8x10(6) autologous BMSCs cultured on granules for 14 days prior to surgery, Group 4: JAX plus fresh bone marrow (BMA), Group 5: cortical autograft, Group 6: JAX plus 2.5 microg VEGF. Radiographs demonstrated that there was more new bone in the BMA and VEGF groups compared to JAX alone. Groups containing autologous BMSCs were only slightly better than JAX alone in the amount of bone in the defect but did improve bridging of the osteotomy. Histomorphometry identified a significant increase in bone volume in the BMA group compared to JAX alone. BMA and VEGF enhanced healing of bone defects whereas expanded BMSCs provided little advantage over scaffold alone. There was no difference between delivery methods of autologous BMSCs. These observations suggest that the provision of osteogenic cells alone is insufficient to enhance bone healing and that additional factors are required to initiate this process in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.