Abstract

The growth of carbon nanotubes, and the role of the catalyst in this process, is only partially understood. Here we report real-time TEM observations of a partially embedded crystalline catalyst particle retracting from the hollow of a growing carbon nanotube, followed by a subsequent closure of the tube. The retraction is explained by size-dependent capillary forces, demonstrating the importance of capillary forces in the interaction between the catalyst and the nanotube. The observed crystallinity of the particle provides evidence that carbon nanotube growth in these circumstances does not require a molten catalyst, and closure of the tube suggests a carbon concentration gradient is involved in the growth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.