Abstract

In this study, a composite material with healable and foldable features is formulated to print conductive patterns on rough surfaces, such as paper, cloth, and three-dimensional (3D) printed objects. Carbon nanotubes (CNTs) are mixed with wax to formulate a solid composite for pen writing. The composite has a low percolation threshold of 2.5 wt % CNTs and can be written on various rough substrates, such as paper and cloth, to create conductive patterns for electronic conductors. Because of the strong infrared (IR) absorption of CNTs, the printed patterns can be selectively sintered by noncontact IR radiation efficiently to show great electrical conductivity. The electrical resistance of the written patterns on paper also show an insignificant increase after bending, folding, and crumpling. Furthermore, the conductive composite exhibits great healability after destructive damages. The conductivity of the damaged patterns after severe folding or knife cutting recovers to its original value with thermal or IR heating. Several examples, such as conductive tracks on paper, cloth, or 3D printed objects, are also demonstrated to show the potential of this healable conductive composite for electronic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.