Abstract

Inspired by the designs of underwater gliders, hybrid autonomous underwater vehicles (AUVs) have emerged recently, which use internal actuators instead of control surfaces to control the heading angle and depth of the vehicles. In this paper, we focus on controlling the heading angle of a REMUS AUV by using an internal moving mass. We derive a nonlinear dynamical model of the vehicle with hydrodynamic forces and coupling between the vehicle and the internal moving mass. The model is used to study the stability of the horizontal-plane motion of the vehicle and to design a linear feedback law to stabilize its heading angle around a desired direction. Simulation results demonstrate that a controlled internal moving mass is able to fulfill the purpose of heading control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.