Abstract
The interest in optical healthcare technologies has increased significantly over the recent years. The innovation of new optical technologies such as Near Infrared Spectroscopy (NIRS), used for the monitoring of brain perfusion, demands a comprehensive understanding and knowledge of the light tissue interaction. Phantoms can provide a rigorous, reproducible and convenient approach for evaluating an optical sensor's performance. However, up to date literature does not provide a detailed description of a complete head model that involves the human anatomy, physiological changes, and the tissue optical properties. The latter is key for the design, development and testing of optical sensors, such as NIRS technologies. This paper compared the optical properties of the materials chosen to build a head phantom, against the optical properties of real brain and skull tissues extracted from animal models. The spectra of a silicone brain and resin skull samples were compared with the spectra of the respective tissues extracted from pigs and mice. The results of this study demonstrated that both phantom materials have similar optical properties to mice and pigs' tissues. The morphology of the phantom's spectra were very similar to the respective animal tissue comparator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.