Abstract
This study aims to investigate the effect of full- and half-rotation angles on patient radiation dose and quantitative image quality in CBCT imaging of the head and neck region. A total of 67 TLDs were used for the dosimetry of 16 different regions in the head and neck slices of the anthropometric phantom. The Hyperion X9 Pro (MyRay, Cefla, Imola, Italy) CBCT device was used with a 90 kV pulsed beam and a 13x16e FOV size. Two separate imaging modes (Regular 360 0 and Quick 180 0) were tested, and the mA was determined by the software. Effective doses (EDs) were calculated using the coefficients recommended by ICRP 103 (2007). For the quantitative image quality tests, three VOIs were manually selected for three separate densities in image slices selected from the mandible, maxilla, and paranasal sinus regions of both volumes separately. Pixel values were averaged, and signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and uniformity tests were conducted. In 360 0, ED was calculated as 1.903 mSv and the highest absorbed dose was found in the oral mucosa (1.566 mSv). In 180 0, ED was calculated as 1.123 mSv and the highest absorbed dose was found in the right temporal squamous region (0.984 mSv). The reduction in ED was found to be 41% for full- and half-rotation angles. Quick/Regular ratios for SNR and CNR were changed between 0.83-0.91. The magnitude of reduction in ED was found to be higher than the quantitative image quality; however, the impact of this change on diagnosis should be analyzed according to the imaging purpose.
Published Version
Join us for a 30 min session where you can share your feedback and ask us any queries you have