Abstract

In this work, NiMo–Al 2O 3 catalysts were prepared by using different alumina precursors. The supports were impregnated by means of the spray at incipient wetness technique in both basic and acid media. Both the supports and fresh catalysts were characterized by the adsorption–desorption isotherms, Temperature-Programmed Reduction (TPR), Thermal Pyridine Adsorption–Desorption (TPD) and X-Ray Diffraction analyses (XRD). After sulfidation, the NiMoS metallic particles were characterized by Transmission Electron Microscopy (TEM). The initial analyses were performed in a trickle-bed reactor by using a real feedstock (Mexican heavy gas oil) and performing hydrotreating reactions (HDS, HDN and HDA) at three different temperatures: 613, 633 and 653 K; and 54 kg cm − 2 . The catalytic activities are discussed in relation to the physicochemical properties of the NiMo catalysts, alumina phase and pH of the impregnating solution. The catalytic results show an increase in the conversion profiles with temperature. The sulfur conversion was increased from 89 to 99.25%, 91–99%, 90.8–97%, 83–95% and 78–96% when the crystal size of the support varied from 3 to 20 nm, respectively. The nitrogen and aromatic conversions were also increased in the range of 23–45 wt.%. It was found that the γ phase reached a higher catalytic performance than the η phase. The NiMo catalysts synthesized in a basic medium showed a better catalytic performance than that obtained with those prepared in acid solutions. The significance of the kinetic data to compare the catalysts is discussed. The maximum value of the catalytic activity was reached with the catalysts with the smallest particle sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.