Abstract
Recently, asthma patients are severely suffering COVID-19 disease, thus the asthma has become one of the dangerous diseases in the world. Further, asthma is occurring in all age groups, which causing huge loss to patient’s health. The primary way to detect the asthma in humans is done by their speech signals, as the asthma severity is increases, which manipulates the properties of speech signal. The conventional methods are failed to extract the maximum features from the speech signals, which resulted in low classification performance. Thus, this article is focused on implementation of real time asthma disease detection and identification technique from speech signals using Hybrid Deep Q Neural Networks (HDQNN). Initially, the features from the speech signals are extracted by using Krill herd optimization (KHO) approach, which extracts the detailed disease specific features. Further, the optimal features are extracted by using chaotic opposition krill herd optimization (COKHO) algorithm. Then, HDQNN is used to classify the type of asthma such as normal, and stridor classes. Further, COKHO is also used to optimize the losses generated in the HDQNN model. The simulation results shows that the proposed HDQNN method resulted in superior performance as compared to state of art approaches.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.