Abstract

Bovine mammary epithelial cells (MAC-Ts) are a common cell line for the study of mammary epithelial inflammation; these cells are used to mechanistically elucidate molecular underpinnings that contribute to bovine mastitis. Bovine mastitis is the most prevalent form of disease in dairy cattle that culminates in annual losses of two billion dollars for the US dairy industry. Thus, there is an urgent need for improved therapeutic strategies. Histone deacetylase (HDAC) inhibitors are efficacious in rodent models of inflammation, yet their role in bovine mammary cells remain unclear. HDACs have traditionally been studied in the regulation of nucleosomal DNA, in which deacetylation of histones impact chromatin accessibility and gene expression. Using MAC-T cells stimulated with tumor necrosis factor α (TNF-α) as a model for mammary cell inflammation, we report that inhibition of HDACs1 and 2 (HDAC1/2) attenuated TNF-α-mediated inflammatory gene expression. Of note, we report that HDAC1/2-mediated inflammatory gene expression was partly regulated by c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation. Here, we report that HDAC1/2 inhibition attenuated JNK and ERK activation and thus inflammatory gene expression. These data suggest that HDACs1 and 2 regulate inflammatory gene expression via canonical (i.e., gene expression) and noncanonical (e.g., signaling dependent) mechanisms. Whereas, further studies using primary cell lines and animal models are needed. Our combined data suggest that HDAC1/2-specific inhibitors may prove efficacious for the treatment of bovine mastitis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.