Abstract

Humans are exposed to plastic particles, but there are no studies on environmental plastics in cell cultures or animals. The toxicological understanding arises from model particles like polystyrene, polyethylene or non-plastic particles like food-grade titanium dioxide. The majority of studies on polystyrene particles show toxicological effects on measures of oxidative stress, inflammation, mitochondrial dysfunction, lysosomal dysfunction and apoptosis. The toxic effects in cell cultures mainly occur at high concentrations. Polyethylene particles seem to generate inflammatory reactions, whereas other toxicological effects have not been assessed. There are very few studies on effects of polystyrene particles in animal models and these have not demonstrated overt indices of toxicity. Studies in animals are the likely way for hazard assessment of micro- or nanoplastics. However, co-culture systems that mimic the complex architecture of mammalian tissues can cost-efficiently determine the hazards of micro- and nanoplastics. Future studies should include low doses of micro- and nanoplastic particles, which are more relevant in the assessment of health risk than the extrapolation of effects from high doses to realistic doses. Based on studies on model particles, environmental exposure to micro- and nanoplastic particles may be a hazard to human health.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.