Abstract

Flash solid-state drives (SSDs) provide much faster access to data compared with traditional hard disk drives (HDDs). The current price and performance of SSD suggest it can be adopted as a data buffer between main memory and HDD, and buffer management policy in such hybrid systems has attracted more and more interest from research community recently. In this paper, we propose a novel approach to manage the buffer in flash-based hybrid storage systems, named hotness aware hit (HAT). HAT exploits a page reference queue to record the access history as well as the status of accessed pages, i.e., hot, warm, and cold. Additionally, the page reference queue is further split into hot and warm regions which correspond to the memory and flash in general. The HAT approach updates the page status and deals with the page migration in the memory hierarchy according to the current page status and hit position in the page reference queue. Compared with the existing hybrid storage approaches, the proposed HAT can manage the memory and flash cache layers more effectively. Our empirical evaluation on benchmark traces demonstrates the superiority of the proposed strategy against the state-of-the-art competitors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.