Abstract
We calculate the ground state phase diagram of the homogeneous electron gas in three dimensions within the Hartree-Fock approximation and show that broken symmetry states are energetically favored at any density against the homogeneous Fermi gas state with isotropic Fermi surface. At high density, we find metallic spin-unpolarized solutions where electronic charge and spin density form an incommensurate crystal having more crystal sites than electrons. For r(s)→0, our solutions approach pure spin-density waves, whereas the commensurate Wigner crystal is favored at lower densities, r(s)≳3.4. Decreasing the density, the system undergoes several structural phase transitions with different lattice symmetries. The polarization transition occurs around r(s)≈8.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.