Abstract

We present two new techniques exploiting a Hartmann-Shack wavefront sensor to characterize the optical self-focusing effect of nonlinear materials. We demonstrate that the defocus Zernike coefficient (C5) can be used to quantify nonlinear optical properties of materials. In the first technique proposed, the wavefront of a collimated laser beam transmitted through a nonlinear sample is analyzed with different irradiance values. In the second technique,instead of conventional detectors, a Hartmann- Shack sensor is used in a Z-scan setup. The methods are demonstrated by measuring the nonlinear refractive indices of CS2 and Quartz, using femtosecond Ti:sapphire lasers at 76 MHz and 1 KHz repetition rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.