Abstract

Dissolved Organic Matter (DOM) plays a pivotal role in influencing metal binding and mobility within lagoon sediments. However, there exists a gap in understanding the compositional alterations of DOM concerning Rare Earth Elements (REEs) across varying pollution gradients. This study aimed to characterize DOM and examine its relationship with REEs in sediment cores from different pollution levels in Yundang Lagoon, China using excitation-emission matrix-parallel factor analysis (EEM-PARAFAC). The results raveled four distinct fluorescent components. Among these, two correspond to humic-like substances, while the remaining two are attributed to protein-like substances. Remarkably, the prevalence of protein-like compounds was observed to exceed 58% of the total fluorescence intensity across all the investigated sites. Furthermore, a substantial discrepancy in total fluorescence intensity was detected between the Songbai Lake and the Inner and Outer Lagoon, indicating a variance in DOM content. In terms of REEs, the average concentration of total REEs was notably elevated within the Songbai Lake sediments (318.36 mg/kg) as compared to the Inner and Outer Lagoon sediments (296.36 and 278.05 mg/kg, respectively). Of significance is the enrichment of Light Rare Earth Elements (LREEs), particularly Ce, La, Pr, and Nd, over Heavy REEs (HREEs) across all surveyed locations. Intriguingly, a coherent trend emerged wherein the fluorescence intensity and LREE concentrations exhibited a synchronized increase from Outer to Inner to Songbai Lake core sediments. This observation substantiates a strong correlation between DOM content and pollution levels (p < 0.05). By shedding light on the intricate interplay between DOM and REEs within urban aquatic sediments, this study imparts novel insights which enrich our comprehension of urban environmental dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.