Abstract

Cells were suggested to sense matrix rigidity by applying fluctuating forces, but the underlying mechanism remains elusive. Here, with a generic filament-crosslinker modeling system for stress fibers, we demonstrate that high mechanical forces can be induced by specific protein–protein interactions with biased kinetics. Strikingly, we further find that there exist two patterns of force generation, a stable pattern and a fluctuated pattern, in agreement with previous experimental observations. Our analysis indicates that the fluctuated force profile is essentially due to force-induced structural instability during structural assembly. We suggest that how cells utilize or circumvent such stable forces or fluctuated forces may be important in other biological processes as well, though whether such forces should be regarded as passive or active is still tentative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.