Abstract

We numerically and experimentally demonstrate super-resolution focusing of the lowest anti-symmetric (A0) mode Lamb waves in a thin aluminum plate. The subwavelength focusing/imaging is achieved by exploiting the anisotropy in phononic crystal (PC) lattices and amplification of evanescent waves. To this end, we embedded a PC flat lens in the aluminum plate, consisting of holes arranged in a square lattice formation. We revealed that the bound slab phonon modes amplify evanescent waves, as previously observed for electromagnetic and acoustic waves. Hence, the slab mode helps propagate subwavelength information through the PC lens to reach the near-field image formed due to negative refraction and result in the high resolution image.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.