Abstract
Hydroxyapatite (HAP) bio-composites play a prominent role in addressing the reparative and replacement needs of human bone and dental tissues. Despite the suboptimal mechanical characteristics inherent in pure HAP, strength and durability enhancements have been achieved by incorporating various alloys and materials. The provided study delves into the radiation shielding and mechanical attributes of Fe2O3-reinforced HAP composites intended for use as implants, featuring Fe2O3 concentrations at 0.0, 2.5, 5.0, and 7.5 wt%. In addition, by leveraging the robust FLUKA Monte Carlo simulation code, the study explores the composites' response to the magnetic field. The findings suggest that augmenting the Fe2O3 content improves radiation shielding and mechanical properties in the chosen samples. Furthermore, in the absence of a magnetic field, the particles' spatial distribution (contour curves) exhibits symmetry along the X-axis. Nonetheless, a discernible pattern becomes apparent upon exposure to a magnetic field of Bx = 5 micro Tesla. The data extracted from this article can be used for medical and therapeutic applications and subsequent studies.
Submitted Version
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.