Abstract

Multiplexed amplification of specific DNA sequences, by PCR or by strand-displacement amplification, is an intrinsically biased process. The relative abundance of amplified DNA can be altered significantly from the original representation and, in extreme cases, allele dropout can occur. In this paper, we present a method of linear amplification of DNA that relies on the cooperative, sequence-dependent functioning of the DNA mismatch-repair enzyme endonuclease V (EndoV) from Thermotoga maritima (Tma) and Bacillus stearothermophilus (Bst) DNA polymerase. Tma EndoV can nick one strand of unmodified duplex DNA, allowing extension by Bst polymerase. By controlling the bases surrounding a mismatch and the mismatch itself, the efficiency of nicking by EndoV and extension by Bst polymerase can be controlled. The method currently allows 100-fold multiplexed amplification of target molecules to be performed isothermally, with an average change of <1.3-fold in their original representation. Because only a single primer is necessary, primer artefacts and nonspecific amplification products are minimized.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.