Abstract

Recently, advances in person re-identification (Re-ID) has benefitted from use of the popular multi-branch network. However, performing feature learning in a single branch with uniform partitioning is likely to separate meaningful local regions, and correlation among different branches is not well established. In this article, we propose a novel harmonious multi-branch network (HMBN) to relieve these intra-branch and inter-branch problems harmoniously. HMBN is a multi-branch network with various stripes on different branches to learn coarse-to-fine pedestrian information. We first replace the uniform partition with a horizontal overlapped partition to cover meaningful local regions between adjacent stripes in a single branch. We then incorporate a novel attention module to make all branches interact by modeling spatial contextual dependencies across branches. Finally, in order to train the HMBN more effectively, a harder triplet loss is introduced to optimize triplets in a harder manner. Extensive experiments are conducted on three benchmark datasets — DukeMTMC-reID, CUHK03, and Market-1501 — demonstrating the superiority of our proposed HMBN over state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.