Abstract
We study harmonic Riemannian maps on locally conformal Kaehler manifolds (lcK manifolds). We show that if a Riemannian holomorphic map between lcK manifolds is harmonic, then the Lee vector field of the domain belongs to the kernel of the Riemannian map under a condition. When the domain is Kaehler, we prove that a Riemannian holomorphic map is harmonic if and only if the lcK manifold is Kaehler. Then we find similar results for Riemannian maps between lcK manifolds and Sasakian manifolds. Finally, we check the constancy of some maps between almost complex (or almost contact) manifolds and almost product manifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.