Abstract

Several techniques have been developed in an effort to estimate mechanical properties of tissues. In this paper, we will discuss the advantages of utilizing a new technique that performs RF signal tracking in order to estimate the localized oscillatory motion resulting from a harmonic radiation force produced by two focused ultrasound transducer elements with overlapping beams oscillating at distinct frequencies. Finite-element and Monte-Carlo simulations were performed in order to characterize the range of oscillatory displacements produced by a harmonic radiation force. The frequencies investigated ranged from 200 Hz to 800 Hz and the stiffness between 20 and 80 kPa. In the experimental verification, three transducers were utilized: two focused transducers at 3.75 MHz and a diagnostic transducer 1.1 MHz operating at pulse/receive mode. Agar gels of 7 - 95 kPa stiffness were utilized. Displacement estimates were obtained during the application of the radiation force oscillating at frequencies of 200 - 800 Hz. In experiments, the estimated oscillatory displacement spanned from -800 to 600 microns depending on the magnitude of the applied radiation force. A frequency upshift and an exponential displacement decrease were obtained with stiffness increase in experiments and simulations. These preliminary results demonstrate the feasibility of imaging localized harmonic motion as induced by an oscillatory ultrasound radiation force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.