Abstract
Somewhat Homomorphic Encryption (SHE) schemes allow to carry out operations on data in the cipher domain. In a cloud computing scenario, personal information can be processed secretly, inferring a high level of confidentiality. For many years, practical parameters of SHE schemes were overestimated, leading to only consider the FFT algorithm to accelerate SHE in hardware. Nevertheless, recent work demonstrates that parameters can be lowered without compromising the security [1] . Following this trend, this work investigates the benefits of using Karatsuba algorithm instead of FFT for the Fan-Vercauteren (FV) Homomorphic Encryption scheme. The proposed accelerator relies on an hardware/software co-design approach, and is designed to perform fast arithmetic operations on degree 2,560 polynomials with 135 bits coefficients, allowing to compute small algorithms homomorphically. Compared to a functionally equivalent design using FFT, our accelerator performs an homomorphic multiplication in 11.9 ms instead of 15.46 ms, and halves the size of logic utilization and registers on the FPGA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.