Abstract

The Smart UAV is the tilt rotor type of unmanned aerial vehicle that has been developed by KARI since 2002. According to the characteristics of tilt rotor aircraft, it has a flight envelope of VTOL(vertical take-off and landing) and high cruise speed. Because the conversion flight between helicopter and airplane mode is required, the actuator system of Smart UAV control surfaces has 12 actuators and 5 controllers for nacelle tilt as well as flaperon, elevator and rotor. Based on Fly-By-Wire system, all actuators except for elevator are an electric linear type with dual motors and RVDT sensors. Actuators for elevator are an electric rotary type with single motor and are equipped on each control surface of two elevators. Controllers for activating actuators were developed in domestic company by interfacing with flight control computer through ARINC 429 and with actuators through analog cable. To accomplish the safe conversion flight between helicopter and airplane mode, a role change of control surfaces according to tilting angle is also required on time. This requires the high reliable and accurate performance for actuator system that consists of actuators, controllers and flight control computer. Prior to actual flight test, this actuator control system was tested and evaluated by Hardware-In-Loop(HIL) simulation on the ground. This paper describes the configuration of actuator control system and HILS system of Smart UAV and gives the results of HILS test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.