Abstract
The present study reports the effect of different process parameters on machining forces, surface roughness, dimensional deviation and material removal rate during hard turning of EN31, SAE8620 and EN9 tool steels. Feed rate followed by hardness, cutting speed and nose radius-depth of cut significantly affected machining forces whereas feed rate had the largest effect on surface roughness. The four responses were subsequently optimized for both rough and finish machining using genetic algorithm to determine the optimum combination of input parameters. Machined surfaces were subsequently analyzed using XRD followed by analysis of grain size and crystallite size of the machined samples and SEM analysis. Higher chromium content was observed at the machined surface as manganese dissolves in cementite and may replace iron atoms in the cementite lattice after machining. High heat is generated when machining at higher cutting speeds causing severe strain. The depth of the white layer decreases with increasing tool nose radius and increases at larger feeds because of greater heat generation. The SEM observations showed a smooth pattern with very low undulations with almost no crack damage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.